• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • ICSE Solutions
    • ICSE Solutions for Class 10
    • ICSE Solutions for Class 9
    • ICSE Solutions for Class 8
    • ICSE Solutions for Class 7
    • ICSE Solutions for Class 6
  • Selina Solutions
  • ML Aggarwal Solutions
  • ISC & ICSE Papers
    • ICSE Previous Year Question Papers Class 10
    • ISC Previous Year Question Papers
    • ICSE Specimen Paper 2021-2022 Class 10 Solved
    • ICSE Specimen Papers 2020 for Class 9
    • ISC Specimen Papers 2020 for Class 12
    • ISC Specimen Papers 2020 for Class 11
    • ICSE Time Table 2020 Class 10
    • ISC Time Table 2020 Class 12
  • Maths
    • Merit Batch

A Plus Topper

Improve your Grades

  • CBSE Sample Papers
  • HSSLive
    • HSSLive Plus Two
    • HSSLive Plus One
    • Kerala SSLC
  • Exams
  • NCERT Solutions for Class 10 Maths
  • NIOS
  • Chemistry
  • Physics
  • ICSE Books

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3

July 10, 2020 by Dattu

NCERT Maths Solutions for Ex 2.3 class 10 Polynomials is the perfect guide to boost up your preparation during CBSE 10th Class Maths Examination.

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 are part of NCERT Solutions for Class 10 Maths. Here are we have given Chapter 2 Polynomials Class 10 NCERT Solutions Ex 2.3. 

  • Polynomials Class 10 Ex 2.1
  • Polynomials Class 10 Ex 2.2
  • Polynomials Class 10 Ex 2.4
BoardCBSE
TextbookNCERT
ClassClass 10
SubjectMaths
ChapterChapter 2
Chapter NamePolynomials
ExerciseEx 2.3
Number of Questions Solved5
CategoryNCERT Solutions

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3

Page No: 36

Question 1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 15

Solution:

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 16
Quotient = x – 3
Remainder = 7x – 9

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 18
Quotient = x2 + x – 3
Remainder = 8

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 19
Quotient = -x2 – 2
Remainder = -5x + 10

Concept Insight: While dividing one polynomial by another, first arrange the polynomial in descending powers of the variable. In the process of division, be careful about the signs of the coefficients of the terms of the polynomials. After performing division, one can check his/her answer obtained by the division algorithm which is as below:
Dividend = Divisor x Quotient + Remainder
Also, remember that the quotient obtained is a polynomial only.

Question 2. Check whether the first polynomial is a factor of the second polynomial by dividing the
second polynomial by the first polynomial:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 20

Solution:
The polynomial 2t4 + 3t3 – 2t2 – 9t – 12  can be divided by the polynomial t2 – 3 = t2 + 0.t – 3 as follows:

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 21
Since the remainder is 0, t² – 3 is a factor of 2t4 + 3t3 – 2t2 – 9t – 12 .
(ii) The polynomial 3x4 + 5x3 – 7x2 + 2x + 2 can be divided by the polynomial x2 + 3x + 1 as follows:
Since the remainder is 0, x² + 3x + 1 is a factor of 3x4 + 5x3 – 7x2 + 2x + 2
(iii) The polynomial x5 – 4x3 + x2 + 3x + 1 can be divided by the  polynomial x3 – 3x + 1 as follows:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 22
Since the remainder is not equal to 0, x3 – 3x + 1 is not a factor of x5 – 4x3 + x2 + 3x + 1.

Concept Insight: A polynomial g(x) is a factor of another polynomial p(x) if the remainder obtained on dividing p(x) by g(x) is zero and not just a constant. While changing the sign, make sure you do not change the sign of the terms which were not involved in the previous operation. For example in the first step of (iii), do not change the sign of 3x + 1.

Question 3. Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are √(5/3) and – √(5/3).

Solution:
Let p(x) = 3x4 + 6x3 – 2x2 – 10x -5
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 23
Now, x² + 2x + 1 = (x + 1)2
So, the two zeroes of  x² + 2x + 1 are -1 and -1.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 24

Concept Insight:  Remember that if (x – a) and (x – b) are factors of a polynomial, then (x – a)(x – b) will also be a factor of that polynomial. Also, if a is a zero of a polynomial p(x), where degree of p(x) is greater than 1, then (x – a) will be a factor of p(x), that is when p(x) is divided by (x – a), then the remainder obtained will be 0 and the quotient will be a factor of the polynomial p(x). To cross check your answer number of zeroes of the polynomial will be less than or equal to the degree of the polynomial.

Question 4. On dividing x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 and
-2x + 4, respectively. Find g(x).

Solution:
Divided, p(x) = x3 – 3x2 + x + 2
Quotient = (x – 2)
Remainder = (-2x + 4)
Let g(x) be the divisor.
According to the division algorithm,
Dividend = Divisor x Quotient + Remainder
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 25

Concept Insight: When a polynomial is divided by any other non-zero polynomial, then it satisfies the division algorithm which is as below:
Dividend = Divisor x Quotient + Remainder
Divisor x Quotient = Dividend – Remainder
So, from this relation, the divisor can be obtained by dividing the result of (Dividend – Remainder) by the quotient.

Question 5. Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
(i) deg p(x) = deg q(x)
(ii) deg q(x) = deg r(x)
(iii) deg r(x) = 0

Solution:
According to the division algorithm, if p(x) and g(x) are two polynomials with g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that
p(x) = g(x) x q(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x).

(i)  Degree of quotient will be equal to degree of dividend when divisor is constant.
Let us consider the division of 18x2 + 3x + 9  by 3.
Here, p(x) = 18x2 + 3x + 9  and g(x) = 3
q(x) = 6x2 + x + 3  and r(x) = 0
Here, degree of p(x) and q(x) is the same which is 2.
Checking:
p(x) = g(x) x q(x) + r(x)
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials 26
Thus, the division algorithm is satisfied.

(ii)  Let us consider the division of 2x4 + 2x by 2x3,
Here, p(x) = 2x4 + 2x and g(x) = 2x3
q(x) = x and r(x) = 2x
Clearly, the degree of q(x) and r(x) is the same which is 1.
Checking,
p(x) = g(x) x q(x) + r(x)
2x4 + 2x =  (2x3 ) x x  + 2x
2x4 + 2x = 2x4 + 2x
Thus, the division algorithm is satisfied.

(iii)    Degree of remainder will be 0 when remainder obtained on division is a constant.
Let us consider the division of 10x3 + 3 by 5x2.
Here, p(x) = 10x3 + 3 and g(x) = 5x2
q(x) = 2x and r(x) = 3
Clearly, the degree of r(x) is 0.
Checking:
p(x) = g(x) x q(x) + r(x)
10x3 + 3 = (5x2 ) x 2x  +  3
10x3 + 3 = 10x3 + 3
Thus, the division algorithm is satisfied.

Concept Insight: In order to answer such type of questions, one should remember the division algorithm. Also, remember the condition on the remainder polynomial r(x). The polynomial r(x) is either 0 or its degree is strictly less than g(x). The answer may not be unique in all the cases because there can be multiple polynomials which satisfy the given conditions.

 

We hope the NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 help you. If you have any query regarding NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3, drop a comment below and we will get back to you at the earliest.

Filed Under: CBSE Tagged With: NCERT Solutions for Class 10 Maths

Primary Sidebar

  • MCQ Questions
  • RS Aggarwal Solutions
  • RS Aggarwal Solutions Class 10
  • RS Aggarwal Solutions Class 9
  • RS Aggarwal Solutions Class 8
  • RS Aggarwal Solutions Class 7
  • RS Aggarwal Solutions Class 6
  • ICSE Solutions
  • Selina ICSE Solutions
  • Concise Mathematics Class 10 ICSE Solutions
  • Concise Physics Class 10 ICSE Solutions
  • Concise Chemistry Class 10 ICSE Solutions
  • Concise Biology Class 10 ICSE Solutions
  • Concise Mathematics Class 9 ICSE Solutions
  • Concise Physics Class 9 ICSE Solutions
  • Concise Chemistry Class 9 ICSE Solutions
  • Concise Biology Class 9 ICSE Solutions
  • ML Aggarwal Solutions
  • ML Aggarwal Class 10 Solutions
  • ML Aggarwal Class 9 Solutions
  • ML Aggarwal Class 8 Solutions
  • ML Aggarwal Class 7 Solutions
  • ML Aggarwal Class 6 Solutions
  • HSSLive Plus One
  • HSSLive Plus Two
  • Kerala SSLC

Recent Posts

  • EQR Certificate (in DRDO Application) | Documents Required, Document and Image Prerequisites
  • 6 Disapproval Letter Samples | Format, Examples and How To Write?
  • DSIR Certificate | Eligibility Criteria, Application Form and Process of Being Certified
  • Georgia Resale Certificate – How To Get and Application Form
  • Caffeine Informative Speech | Informative Speech on Coffee, Advantages and Disadvantages of Caffeine
  • Age Certificate | Online, Format, How to Get Age Certificate? Age Certificate for Pension
  • Disagreement Letter With A False Accusation | Samples. Example and How To Write?
  • Military Payment Certificate (MPC) | Series 521, 481, 681, 692, 641, 661, Design and Value
  • Essay on Labour Day | Labour Day Essay for Students and Children in English
  • National Career Readiness Certificate (NCRC) | Benefits, Requirements, How to Get NCRC?, Validation
  • Labour Day Speech | Speech on Labour Day for Students and Children in English

Footer

  • RS Aggarwal Solutions
  • RS Aggarwal Solutions Class 10
  • RS Aggarwal Solutions Class 9
  • RS Aggarwal Solutions Class 8
  • RS Aggarwal Solutions Class 7
  • RS Aggarwal Solutions Class 6
  • Picture Dictionary
  • English Speech
  • ICSE Solutions
  • Selina ICSE Solutions
  • ML Aggarwal Solutions
  • HSSLive Plus One
  • HSSLive Plus Two
  • Kerala SSLC
  • Distance Education
DisclaimerPrivacy Policy
Area Volume Calculator