Selina Concise Mathematics Class 10 ICSE Solutions Remainder and Factor Theorems
APlusTopper.com provides step by step solutions for Selina Concise ICSE Solutions for Class 10 Mathematics Chapter 8 Remainder and Factor Theorems. You can download the Selina Concise Mathematics ICSE Solutions for Class 10 with Free PDF download option. Selina Publishers Concise Mathematics for Class 10 ICSE Solutions all questions are solved and explained by expert mathematic teachers as per ICSE board guidelines.
Download Formulae Handbook For ICSE Class 9 and 10
ICSE SolutionsSelina ICSE Solutions
Selina ICSE Solutions for Class 10 Maths Chapter 8 Remainder and Factor Theorems
Exercise 8(A)
Question 1.
Solution:
By remainder theorem we know that when a polynomial f (x) is divided by x – a, then the remainder is f(a).
Question 2.
Solution:
(x – a) is a factor of a polynomial f(x) if the remainder, when f(x) is divided by (x – a), is 0, i.e., if f(a) = 0.
Question 3.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
(i) x + 1
(ii) 2x – 1
(iii) x + 2
Solution:
By remainder theorem we know that when a polynomial f (x) is divided by x – a, then the remainder is f(a).
Let f(x) = 2x3 + 3x2 – 5x – 6
(i) f (-1) = 2(-1)3 + 3(-1)2 – 5(-1) – 6 = -2 + 3 + 5 – 6 = 0
Thus, (x + 1) is a factor of the polynomial f(x).
Thus, (2x – 1) is not a factor of the polynomial f(x).
(iii) f (-2) = 2(-2)3 + 3(-2)2 – 5(-2) – 6 = -16 + 12 + 10 – 6 = 0
Thus, (x + 2) is a factor of the polynomial f(x).
Question 4.
(i) If 2x + 1 is a factor of 2x2 + ax – 3, find the value of a.
(ii) Find the value of k, if 3x – 4 is a factor of expression 3x2 + 2x – k.
Solution:
Question 5.
Find the values of constants a and b when x – 2 and x + 3 both are the factors of expression x3 + ax2 + bx – 12.
Solution:
Question 6.
find the value of k, if 2x + 1 is a factor of (3k + 2)x3 + (k – 1).
Solution:
Question 7.
Find the value of a, if x – 2 is a factor of 2x5 – 6x4 – 2ax3 + 6ax2 + 4ax + 8.
Solution:
f(x) = 2x5 – 6x4 – 2ax3 + 6ax2 + 4ax + 8
x – 2 = 0 ⇒ x = 2
Since, x – 2 is a factor of f(x), remainder = 0.
2(2)5 – 6(2)4 – 2a(2)3 + 6a(2)2 + 4a(2) + 8 = 0
64 – 96 – 16a + 24a + 8a + 8 = 0
-24 + 16a = 0
16a = 24
a = 1.5
Question 8.
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1) x2 + nx – 18.
Solution:
Question 9.
When x3 + 2x2 – kx + 4 is divided by x – 2, the remainder is k. Find the value of constant k.
Solution:
Question 10.
Find the value of a, if the division of ax3 + 9x2 + 4x – 10 by x + 3 leaves a remainder 5.
Solution:
Question 11.
If x3 + ax2 + bx + 6 has x – 2 as a factor and leaves a remainder 3 when divided by x – 3, find the values of a and b.
Solution:
Question 12.
The expression 2x3 + ax2 + bx – 2 leaves remainder 7 and 0 when divided by 2x – 3 and x + 2 respectively. Calculate the values of a and b.
Solution:
Question 13.
What number should be added to 3x3 – 5x2 + 6x so that when resulting polynomial is divided by x – 3, the remainder is 8?
Solution:
Question 14.
What number should be subtracted from x3 + 3x2 – 8x + 14 so that on dividing it with x – 2, the remainder is 10.
Solution:
Question 15.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
Solution:
Question 16.
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b
Solution:
Question 17.
Find ‘a‘ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leave the same remainder when divided by x + 3.
Solution:
Exercise 8(B)
Question 1.
Using the Factor Theorem, show that:
(i) (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.
(ii) (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely.
(iii) (3x + 2) is a factor of 3x3 + 2x2 – 3x – 2. Hence, factorise the expression 3x3 + 2x2 – 3x – 2 completely.
Solution:
Question 2.
Using the Remainder Theorem, factorise each of the following completely.
(i) 3x3 + 2x2 − 19x + 6
(ii) 2x3 + x2 – 13x + 6
(iii) 3x3 + 2x2 – 23x – 30
(iv) 4x3 + 7x2 – 36x – 63
(v) x3 + x2 – 4x – 4
Solution:
Question 3.
Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0.
Solution:
Question 4.
Factorise the expression f (x) = 2x3 – 7x2 – 3x + 18. Hence, find all possible values of x for which f(x) = 0.
Solution:
Question 5.
Given that x – 2 and x + 1 are factors of f(x) = x3 + 3x2 + ax + b; calculate the values of a and b. Hence, find all the factors of f(x).
Solution:
Question 6.
The expression 4x3 – bx2 + x – c leaves remainders 0 and 30 when divided by x + 1 and 2x – 3 respectively. Calculate the values of b and c. Hence, factorise the expression completely.
Solution:
Question 7.
If x + a is a common factor of expressions f(x) = x2 + px + q and g(x) = x2 + mx + n;
Solution:
Question 8.
The polynomials ax3 + 3x2 – 3 and 2x3 – 5x + a, when divided by x – 4, leave the same remainder in each case. Find the value of a.
Solution:
Let f(x) = ax3 + 3x2 – 3
When f(x) is divided by (x – 4), remainder = f(4)
f(4) = a(4)3 + 3(4)2 – 3 = 64a + 45
Let g(x) = 2x3 – 5x + a
When g(x) is divided by (x – 4), remainder = g(4)
g(4) = 2(4)3 – 5(4) + a = a + 108
It is given that f(4) = g(4)
64a + 45 = a + 108
63a = 63
a = 1
Question 9.
Find the value of ‘a’, if (x – a) is a factor of x3 – ax2 + x + 2.
Solution:
Let f(x) = x3 – ax2 + x + 2
It is given that (x – a) is a factor of f(x).
Remainder = f(a) = 0
a3 – a3 + a + 2 = 0
a + 2 = 0
a = -2
Question 10.
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Solution:
Let the number to be subtracted from the given polynomial be k.
Let f(y) = 3y3 + y2 – 22y + 15 – k
It is given that f(y) is divisible by (y + 3).
Remainder = f(-3) = 0
3(-3)3 + (-3)2 – 22(-3) + 15 – k = 0
-81 + 9 + 66 + 15 – k = 0
9 – k = 0
k = 9
Exercise 8(C)
Question 1.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Solution:
Question 2.
Using Remainder Theorem, factorise:
x3 + 10x2 – 37x + 26 completely.
Solution:
Question 3.
When x3 + 3x2 – mx + 4 is divided by x – 2, the remainder is m + 3. Find the value of m.
Solution:
Let f(x) = x3 + 3x2 – mx + 4
According to the given information,
f(2) = m + 3
(2)3 + 3(2)2 – m(2) + 4 = m + 3
8 + 12 – 2m + 4 = m + 3
24 – 3 = m + 2m
3m = 21
m = 7
Question 4.
What should be subtracted from 3x3 – 8x2 + 4x – 3, so that the resulting expression has x + 2 as a factor?
Solution:
Let the required number be k.
Let f(x) = 3x3 – 8x2 + 4x – 3 – k
According to the given information,
f (-2) = 0
3(-2)3 – 8(-2)2 + 4(-2) – 3 – k = 0
-24 – 32 – 8 – 3 – k = 0
-67 – k = 0
k = -67
Thus, the required number is -67.
Question 5.
If (x + 1) and (x – 2) are factors of x3 + (a + 1)x2 – (b – 2)x – 6, find the values of a and b. And then, factorise the given expression completely.
Solution:
Let f(x) = x3 + (a + 1)x2 – (b – 2)x – 6
Since, (x + 1) is a factor of f(x).
Remainder = f(-1) = 0
(-1)3 + (a + 1)(-1)2 – (b – 2) (-1) – 6 = 0
-1 + (a + 1) + (b – 2) – 6 = 0
a + b – 8 = 0 …(i)
Since, (x – 2) is a factor of f(x).
Remainder = f(2) = 0
(2)3 + (a + 1) (2)2 – (b – 2) (2) – 6 = 0
8 + 4a + 4 – 2b + 4 – 6 = 0
4a – 2b + 10 = 0
2a – b + 5 = 0 …(ii)
Adding (i) and (ii), we get,
3a – 3 = 0
a = 1
Substituting the value of a in (i), we get,
1 + b – 8 = 0
b = 7
f(x) = x3 + 2x2 – 5x – 6
Now, (x + 1) and (x – 2) are factors of f(x). Hence, (x + 1) (x – 2) = x2 – x – 2 is a factor of f(x).
f(x) = x3 + 2x2 – 5x – 6 = (x + 1) (x – 2) (x + 3)
Question 6.
If x – 2 is a factor of x2 + ax + b and a + b = 1, find the values of a and b.
Solution:
Let f(x) = x2 + ax + b
Since, (x – 2) is a factor of f(x).
Remainder = f(2) = 0
(2)2 + a(2) + b = 0
4 + 2a + b = 0
2a + b = -4 …(i)
It is given that:
a + b = 1 …(ii)
Subtracting (ii) from (i), we get,
a = -5
Substituting the value of a in (ii), we get,
b = 1 – (-5) = 6
Question 7.
Factorise x3 + 6x2 + 11x + 6 completely using factor theorem.
Solution:
Question 8.
Find the value of ‘m’, if mx3 + 2x2 – 3 and x2 – mx + 4 leave the same remainder when each is divided by x – 2.
Solution:
Let f(x) = mx3 + 2x2 – 3
g(x) = x2 – mx + 4
It is given that f(x) and g(x) leave the same remainder when divided by (x – 2). Therefore, we have:
f (2) = g (2)
m(2)3 + 2(2)2 – 3 = (2)2 – m(2) + 4
8m + 8 – 3 = 4 – 2m + 4
10m = 3
m = 3/10
Question 9.
The polynomial px3 + 4x2 – 3x + q is completely divisible by x2 – 1; find the values of p and q. Also, for these values of p and q factorize the given polynomial completely.
Solution:
Let f(x) = px3 + 4x2 – 3x + q
It is given that f(x) is completely divisible by (x2 – 1) = (x + 1)(x – 1).
Therefore, f(1) = 0 and f(-1) = 0
f(1) = p(1)3 + 4(1)2 – 3(1) + q = 0
p + q + 1 = 0 …(i)
f(-1) = p(-1)3 + 4(-1)2 – 3(-1) + q = 0
-p + q + 7 = 0 …(ii)
Adding (i) and (ii), we get,
2q + 8 = 0
q = -4
Substituting the value of q in (i), we get,
p = -q – 1 = 4 – 1 = 3
f(x) = 3x3 + 4x2 – 3x – 4
Given that f(x) is completely divisible by (x2 – 1).
Question 10.
Find the number which should be added to x2 + x + 3 so that the resulting polynomial is completely divisible by (x + 3).
Solution:
Let the required number be k.
Let f(x) = x2 + x + 3 + k
It is given that f(x) is divisible by (x + 3).
Remainder = 0
f (-3) = 0
(-3)2 + (-3) + 3 + k = 0
9 – 3 + 3 + k = 0
9 + k = 0
k = -9
Thus, the required number is -9.
Question 11.
When the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A and when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B. Find the value of ‘a’ if 2A + B = 0.
Solution:
It is given that when the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A.
(1)3 + 2(1)2 – 5a(1) – 7 = A
1 + 2 – 5a – 7 = A
– 5a – 4 = A …(i)
It is also given that when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B.
x3 + ax2 – 12x + 16 = B
(-2)3 + a(-2)2 – 12(-2) + 16 = B
-8 + 4a + 24 + 16 = B
4a + 32 = B …(ii)
It is also given that 2A + B = 0
Using (i) and (ii), we get,
2(-5a – 4) + 4a + 32 = 0
-10a – 8 + 4a + 32 = 0
-6a + 24 = 0
6a = 24
a = 4
Question 12.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
Solution:
Question 13.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Solution:
If (x – 3) divides f(x) = x3 – px2 + x + 6, then,
Remainder = f(3) = 33 – p(3)2 + 3 + 6 = 36 – 9p
If (x – 3) divides g(x) = 2x3 – x2 – (p + 3) x – 6, then
Remainder = g(3) = 2(3)3 – (3)2 – (p + 3) (3) – 6 = 30 – 3p
Now, f(3) = g(3)
⇒ 36 – 9p = 30 – 3p
⇒ -6p = -6
⇒ p = 1
Question 14.
Use the Remainder Theorem to factorise the following expression:
2x3 + x2 – 13x + 6
Solution:
More Resources for Selina Concise Class 10 ICSE Solutions
remainder and factor theorem class 10 icse. It’s good
remainder and factor theorem questions and answers pdf really help ful
😊
concise mathematics class 10 icse solutions. I like it
selina publishers mathematics for class 10 solutions helped me a lot. The best helping site for ICSE . I have learned well for my board exam mainly mathematics.
It’s just very helpful in exams
This too helpful but there 8(c) last 15th solution is not there
Yes o also have this problem
Consice solution I like it very much thanks for this
Consice solution
thanks for this
Pretty helpful site and it helps the people at night when you can’t contact ur teacher coz they would be sleeping….. But some chapters’ questions are not updated from 2016….RFT 8B excersize doesn’t have the 15 the question,,,GP does not have many questions.
.. But is alright…. It’s not like that I am complaining!!!!! 🙂
Helpful site..
very very helpful thanks for it $$$$$$
aplutopper solutions for maths are very easy and really helpful
aplustopper u are awesome 😍😍🤩😍
Thank you ☺️
Nice one a plus topper