• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • RS Aggarwal Solutions
    • RS Aggarwal Class 10 Solutions
    • RS Aggarwal Class 9 Solutions
    • RS Aggarwal Solutions Class 8
    • RS Aggarwal Solutions Class 7
    • RS Aggarwal Solutions Class 6
  • ICSE Solutions
    • ICSE Solutions for Class 10
    • ICSE Solutions for Class 9
    • ICSE Solutions for Class 8
    • ICSE Solutions for Class 7
    • ICSE Solutions for Class 6
  • Selina Solutions
  • ML Aggarwal Solutions
  • ISC & ICSE Papers
    • ICSE Previous Year Question Papers Class 10
    • ISC Previous Year Question Papers
    • ICSE Specimen Paper 2021-2022 Class 10 Solved
    • ICSE Specimen Papers 2020 for Class 9
    • ISC Specimen Papers 2020 for Class 12
    • ISC Specimen Papers 2020 for Class 11
    • ICSE Time Table 2020 Class 10
    • ISC Time Table 2020 Class 12
  • Maths
    • Merit Batch

A Plus Topper

Improve your Grades

  • CBSE Sample Papers
  • HSSLive
    • HSSLive Plus Two
    • HSSLive Plus One
    • Kerala SSLC
  • Exams
  • NCERT Solutions for Class 10 Maths
  • NIOS
  • Chemistry
  • Physics
  • ICSE Books

What is a Plane in 3D?

December 11, 2020 by Prasanna

What is a Plane in 3D?

Definition of plane and its equations

If point P(x, y, z) moves according to certain rule, then it may lie in a 3-D region on a surface or on a line or it may simply be a point. Whatever we get, as the region of P after applying the rule, is called locus of P. Let us discuss about the plane or curved surface. If Q be any other point on it’s locus and all points of the straight line PQ lie on it, it is a plane. In other words if the straight line PQ, however small and in whatever direction it may be, lies completely on the locus, it is a plane, otherwise any curved surface.

  1. General equation of plane: Every equation of first degree of the form Ax + By + Cz + D = 0 represents the equation of a plane. The coefficients of x, y and z i.e., A, B, C are the direction ratios of the normal to the plane.
  2. Equation of co-ordinate planes: XOY-plane : z = 0, YOZ -plane : x = 0, ZOX-plane : y = 0.
  3. Equation of plane in various forms:
    1. Intercept form: If the plane cuts the intercepts of length a, b, c on co-ordinate axes, then its equation is
      What is a Plane in 3D 1.
    2. Normal form: Normal form of the equation of plane is , where l, m, n are the d.c.’s of the normal to the plane and p is the length of perpendicular from the origin.
  4. Equation of plane in particular cases:
    Equation of plane through the origin is given by Ax + By + Cz = 0.
    i.e, if D = 0, then the plane passes through the origin.
  5. Equation of plane parallel to co-ordinate planes or perpendicular to co-ordinate axes:
    1. Equation of plane parallel to YOZ-plane (or perpendicular to x-axis) and at a distance ‘a’ from it is x = a.
    2. Equation of plane parallel to ZOX-plane (or perpendicular to y-axis) and at a distance ‘b’ from it is y = b.
    3. Equation of plane parallel to XOY-plane (or perpendicular to z-axis) and at a distance ‘c’ from it is z = c.
  6. Equation of plane perpendicular to co-ordinate planes or parallel to co-ordinate axes:
    1. Equation of plane perpendicular to YOZ-plane or parallel to x-axis is By + Cz + D = 0.
    2. Equation of plane perpendicular to ZOX-plane or parallel to y-axis is Ax + Cz + D = 0.
    3. Equation of plane perpendicular to XOY-plane or parallel to z-axis is Ax + By + D = 0.
  7. Equation of plane parallel to a given plane:
    Plane parallel to a given plane ax + by + cz + d = 0 is ax + by + cz + d’ = 0, i.e. only constant term is changed.
  8. Equation of plane passing through the intersection of two planes:
    Equation of plane through the intersection of two planes P = a1x + b1y + c1z + d1 = 0 and Q = a2x + b2y + c2z + d2 = 0 is P + λQ = 0, where λ is the parameter.

Equation of plane passing through the given point

  1. Equation of plane passing through a given point:
    Equation of plane passing through the point (x1, y1, z1) is A(x – x1) + B(y – y1) + C(z – z1) = 0, where A, B and C are d.r.’s of normal to the plane.
  2. Equation of plane through three points:
    The equation of plane passing through three non-collinear points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) is
    What is a Plane in 3D 2

Foot of perpendicular from a point A(α, β, γ) to a given plane ax + by + cz + d = 0.

If AP be the perpendicular from A to the given plane, then it is parallel to the normal, so that its equation is
What is a Plane in 3D 3
Any point P on it is (ar + α, br + β, cr + γ). It lies on the given plane and we find the value of r and hence the point P.

  1. Perpendicular distance:
    The length of the perpendicular from the point P(x1, y1, z1) to the plane ax + by + cz + d = 0 is
    What is a Plane in 3D 4
    Distance between two parallel planes Ax + By + Cz + D1 = 0 and Ax + By + Cz + D2 = 0 is
    What is a Plane in 3D 5
  2. Position of two points w.r.t. a plane:
    Two points P(x1, y1, z1) and Q(x2, y2, z2) lie on the same or opposite sides of a plane ax + by + cz + d = 0 according to a1x + b1y + c1z + d and a2x + b2y + c2z + d are of same or opposite signs. The plane divides the line joining the points P and Q externally or internally according to P and Q are lying on same or opposite sides of the plane.

Angle between two planes

Angle between the planes is defined as angle between normals to the planes drawn from any point. Angle between the planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 is
What is a Plane in 3D 6

Equation of planes bisecting angle between two given planes

Equations of planes bisecting angles between the planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 are
What is a Plane in 3D 7
(i) If angle between bisector plane and one of the plane is less than 45o, then it is acute angle bisector, otherwise it is obtuse angle bisector.
(ii) If a1a2 + b1b2 + c1c2 is negative, then origin lies in the acute angle between the given planes provided d1 and d2 are of same sign and if a1a2 + b1b2 + c1c2 is positive, then origin lies in the obtuse angle between the given planes.

Image of a point in a plane

Let P and Q be two points and let π be a plane such that
(i) Line PQ is perpendicular to the plane π, and
(ii) Mid-point of PQ lies on the plane π.
Then either of the point is the image of the other in the plane π.
To find the image of a point in a given plane, we proceed as follows
(i) Write the equations of the line passing through P and normal to the given plane as
What is a Plane in 3D 8
(ii) Write the co-ordinates of image Q as (x1 + ar, y1 + br, x1 +cr).
(iii) Find the co-ordinates of the mid-point R of PQ.
(iv) Obtain the value of r by putting the co-ordinates of R in the equation of the plane.
(v) Put the value of r in the co-ordinates of Q.

Coplanar lines

Lines are said to be coplanar if they lie in the same plane or a plane can be made to pass through them.
Condition for the lines to be coplanar:
What is a Plane in 3D 9

Filed Under: Mathematics Tagged With: Angle between two planes, Coplanar lines, Definition of plane and its equations, Equation of co-ordinate planes, Equation of plane in various forms, Equation of plane parallel to a given plane, Equation of plane parallel to co-ordinate planes or perpendicular to co-ordinate axes, Equation of plane passing through the given point, Equation of plane passing through the intersection of two planes, Equation of plane perpendicular to co-ordinate planes or parallel to co-ordinate axes, Equation of planes bisecting angle between two given planes, Foot of perpendicular from a point to a given plane, General equation of plane, Image of a point in a plane

Primary Sidebar

  • MCQ Questions
  • RS Aggarwal Solutions
  • RS Aggarwal Solutions Class 10
  • RS Aggarwal Solutions Class 9
  • RS Aggarwal Solutions Class 8
  • RS Aggarwal Solutions Class 7
  • RS Aggarwal Solutions Class 6
  • ICSE Solutions
  • Selina ICSE Solutions
  • Concise Mathematics Class 10 ICSE Solutions
  • Concise Physics Class 10 ICSE Solutions
  • Concise Chemistry Class 10 ICSE Solutions
  • Concise Biology Class 10 ICSE Solutions
  • Concise Mathematics Class 9 ICSE Solutions
  • Concise Physics Class 9 ICSE Solutions
  • Concise Chemistry Class 9 ICSE Solutions
  • Concise Biology Class 9 ICSE Solutions
  • ML Aggarwal Solutions
  • ML Aggarwal Class 10 Solutions
  • ML Aggarwal Class 9 Solutions
  • ML Aggarwal Class 8 Solutions
  • ML Aggarwal Class 7 Solutions
  • ML Aggarwal Class 6 Solutions
  • HSSLive Plus One
  • HSSLive Plus Two
  • Kerala SSLC

Recent Posts

  • Positive Words That Start With R | List of Positive Words Starting With R Meaning, Examples,Pictures and Facts
  • Positive Words That Start With Q | List of Positive Words Starting With Q Pictures and Facts
  • Positive Words That Start With P | List of Positive Words Starting With P Meaning, Examples, Pictures and Facts
  • Positive Words That Start With O | List of 54 Positive Words Starting With O Meaning, Exampes, Pictures and Facts
  • Positive Words That Start With N | List of 64 Positive Words Starting With N Pictures and Facts
  • Advantages and Disadvantages Essay Topics for Students, IELTS & Learners
  • Positive Words That Start With M | List of 31 Positive Words Starting With M Pictures and Facts
  • Positive Words That Start With L | Huge List of 28 Positive Words Starting With L Pictures and Facts
  • Positive Words That Start With S | List of Positive Words Starting With S Meaning, Examples,Pictures and Facts
  • Positive Words that Start With J | List of 49 Positive Words Starting With J Meaning, Examples, Pictures and Facts
  • Positive Words That Start With V | List of Positive Words Starting With V Meaning, Examples,Pictures and Facts

Footer

  • RS Aggarwal Solutions
  • RS Aggarwal Solutions Class 10
  • RS Aggarwal Solutions Class 9
  • RS Aggarwal Solutions Class 8
  • RS Aggarwal Solutions Class 7
  • RS Aggarwal Solutions Class 6
  • Picture Dictionary
  • English Speech
  • ICSE Solutions
  • Selina ICSE Solutions
  • ML Aggarwal Solutions
  • HSSLive Plus One
  • HSSLive Plus Two
  • Kerala SSLC
  • Distance Education
DisclaimerPrivacy Policy
Area Volume CalculatorBiology Homework Help
Homework HelpHistory Questions and Answers