{"id":654,"date":"2022-12-15T10:00:34","date_gmt":"2022-12-15T04:30:34","guid":{"rendered":"https:\/\/www.aplustopper.com\/?p=654"},"modified":"2022-12-16T09:26:34","modified_gmt":"2022-12-16T03:56:34","slug":"areas-of-two-similar-triangles","status":"publish","type":"post","link":"https:\/\/www.aplustopper.com\/areas-of-two-similar-triangles\/","title":{"rendered":"Areas Of Two Similar Triangles"},"content":{"rendered":"

Areas Of Two Similar Triangles<\/a><\/strong><\/h2>\n

Theorem 1: \u00a0<\/strong>The ratio of the areas of two similar triangles are equal to the ratio of the squares of any two corresponding sides.
\nGiven:<\/strong> Two triangles ABC and DEF such that \u2206ABC ~ \u2206DEF.
\nTo Prove: <\/strong>\u00a0\\(\\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=\\frac{A{{B}^{2}}}{D{{E}^{2}}}=\\frac{B{{C}^{2}}}{E{{F}^{2}}}=\\frac{A{{C}^{2}}}{D{{F}^{2}}}\\)
\n\"areas-of-two-similar-triangles-1\"
\nConstruction: Draw AL \u22a5\u00a0BC and DM \u22a5\u00a0EF.
\nProof:<\/strong> Since similar triangles are equiangular and their corresponding sides are proportional. Therefore,
\n\u2206ABC ~ \u2206DEF
\n\u21d2 \u00a0\u2220A = \u2220D, \u00a0\u00a0\u2220B = \u2220E, \u00a0\u00a0\u2220C = \u2220F \u00a0\u00a0and \u00a0 \\(\\frac{AB}{DE}=\\frac{BC}{EF}=\\frac{AC}{DF} \\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0….(i)
\nThus, in \u2206ALB and \u2206DME, we have
\n\u21d2 \u2220ALB = \u2220DME \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0[Each equal to 90\u00ba]
\nand, \u2220B = \u2220E \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 [From (i)]
\nSo, by AA-criterion of similarity, we have
\n\u2206ALB ~ \u2206DME
\n\\(\\Rightarrow \\frac{AL}{DM}=\\frac{AB}{DE} \\) \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 ….(ii)
\nFrom (i) and (ii), we get
\n\\(\\frac{AB}{DE}=\\frac{BC}{EF}=\\frac{AC}{DF}=\\frac{AL}{DM} \u00a0\\)
\nNow,
\n\\(\\Rightarrow \\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=\\frac{\\frac{1}{2}(BC\\times AL)}{\\frac{1}{2}(EF\\times DM)}\\)
\n\\(\\Rightarrow \\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=\\frac{BC}{EF}\\times \\frac{AL}{DM} \\)
\n\\(\\Rightarrow \\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=\\frac{BC}{EF}\\times \\frac{BC}{EF}\\text{\u00a0\u00a0\u00a0 }\\left[ From\\ (iii),\\ \\frac{BC}{EF}=\\frac{AL}{DM} \\right]\\)
\n\\(\\Rightarrow \\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=\\frac{B{{C}^{2}}}{E{{F}^{2}}} \\)
\n\\(But\\frac{BC}{EF}=\\frac{AB}{DE}=\\frac{AC}{DF} \\)
\n\\(\\Rightarrow \\frac{B{{C}^{2}}}{E{{F}^{2}}}=\\frac{A{{B}^{2}}}{D{{E}^{2}}}=\\frac{A{{C}^{2}}}{D{{F}^{2}}} \\)
\n\\(Hence,\\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=\\frac{A{{B}^{2}}}{D{{E}^{2}}}=\\frac{B{{C}^{2}}}{E{{F}^{2}}}=\\frac{A{{C}^{2}}}{D{{F}^{2}}} \\)<\/p>\n

Theorem 2: \u00a0<\/strong>If the areas of two similar triangles are equal, then the triangles are congruent i.e. equal and similar triangles are congruent.
\nGiven:<\/strong> Two triangles ABC and DEF such that
\n\u2206ABC ~ \u2206DEF and Area (\u2206ABC) = Area (\u2206DEF).
\nTo Prove:<\/strong> We have,
\n\u2206ABC \u2245\u00a0\u2206DEF
\nProof:<\/strong>\u00a0\u2206ABC ~ \u2206DEF
\n\u2220A = \u2220D, \u00a0\u00a0\u2220B = \u2220E, \u00a0\u00a0\u2220C = \u2220F \u00a0\u00a0and \u00a0 \\(\\frac{AB}{DE}=\\frac{BC}{EF}=\\frac{AC}{DF} \\)
\nIn order to prove that \u2206ABC \u2245\u00a0\u2206DEF, it is sufficient to show that AB = DE, BC = EF and AC = DF.
\nNow, Area (\u2206ABC) = Area (\u2206DEF)
\n\\(\\Rightarrow \\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=1\\)
\n\\(\\Rightarrow \\frac{A{{B}^{2}}}{D{{E}^{2}}}=\\frac{B{{C}^{2}}}{E{{F}^{2}}}=\\frac{A{{C}^{2}}}{D{{F}^{2}}}=1\\text{\u00a0\u00a0\u00a0\u00a0\u00a0 }\\left[ \\because \\ \\frac{Area\\ (\\Delta ABC)}{Area\\ (\\Delta DEF)}=\\frac{A{{B}^{2}}}{D{{E}^{2}}}=\\frac{B{{C}^{2}}}{E{{F}^{2}}}=\\frac{A{{C}^{2}}}{D{{F}^{2}}} \\right] \\)
\n\u21d2 \u00a0AB2<\/sup>\u00a0= DE2<\/sup>, \u00a0 \u00a0BC2<\/sup>\u00a0= EF2 \u00a0<\/sup>\u00a0and \u00a0 AC2<\/sup> = DF2<\/sup>
\n\u21d2 \u00a0AB = DE, \u00a0 BC = EF \u00a0 and \u00a0 AC = DF
\nHence, \u2206ABC \u2245\u00a0\u2206DEF.<\/p>\n

Read More:<\/b><\/p>\n