{"id":1802,"date":"2022-11-18T09:30:24","date_gmt":"2022-11-18T04:00:24","guid":{"rendered":"https:\/\/www.aplustopper.com\/?p=1802"},"modified":"2022-11-19T09:52:52","modified_gmt":"2022-11-19T04:22:52","slug":"equations-of-motion","status":"publish","type":"post","link":"https:\/\/www.aplustopper.com\/equations-of-motion\/","title":{"rendered":"What Are The Equations Of Motion"},"content":{"rendered":"

Equations Of Motion<\/strong><\/h2>\n

Motion under uniform acceleration<\/strong><\/p>\n

1st<\/sup>\u00a0Equation of motion<\/a><\/strong>
\nFor an object moving with uniform
velocity<\/a>, v, its displacement<\/a>, s after time, t is given by:
\ns = v \u00d7\u00a0t<\/strong>
\nConsider a body having initial velocity ‘u’. Suppose it is subjected to a uniform
acceleration<\/a> ‘a’ so that after time ‘t’ its final velocity becomes ‘v’. Now we know,
\n\\( \\text{ }\\!\\!~\\!\\!\\text{ Acceleration}=\\frac{\\text{change}\\,\\,\\text{in}\\,\\text{velocity}}{\\text{Time}} \\)
\n\\( a=\\frac{v-u}{t} \\)
\nor \u00a0 \u00a0 v = u + at \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u2026..(i)<\/strong><\/p>\n

2nd<\/sup> Equation of motion<\/strong>
\nSuppose a body has an initial velocity ‘u’ and uniform acceleration ‘a’ for time ‘t’ so that its final velocity becomes ‘v’. The
distance<\/a> travelled by moving body in time ‘t’ is ‘s’ then the average velocity = (v + u)\/2.
\nDistance travelled = Average velocity \u00d7 time
\n\\( \\text{S}=\\left( \\frac{u+v}{2} \\right)t\\text{ } \\)
\n\\( \\Rightarrow \\text{S}=\\left( \\frac{u+u+at}{2} \\right)t\\text{ }\\left( as\\text{ }v=u+at \\right)~ \\)
\n\\( \\Rightarrow \\text{S}=\\left( \\frac{2u+at}{2} \\right)t \\)
\n\\( \\Rightarrow \\text{S}=\\frac{2ut+a{{t}^{2}}}{2} \\)
\n\\( \\text{S}=ut+\\frac{1}{2}a{{t}^{2}}\\text{ }……\\text{ (ii)} \\)<\/p>\n

3rd<\/sup> Equation of motion<\/strong>
\nDistance travelled = Average velocity x time
\n\\( S=\\left( \\frac{u+v}{2} \\right)t\\text{ }………\\text{ (iii)} \\)
\n\\( \\text{from equation }\\left( \\text{i} \\right)\\text{ }t=\\frac{v-u}{a} \\)
\nSubstituting the value of t in equation (iii),
\n\\( \\text{we get }S=\\left( \\frac{v-u}{a} \\right)\\left( \\frac{v+u}{2} \\right) \\)
\n\\( S=\\left( \\frac{{{v}^{2}}-{{u}^{2}}}{2a} \\right) \\)
\n\u21d2\u00a02as = v2<\/sup> \u2013 u2<\/sup> or
\nv2<\/sup> = u2<\/sup> + 2as \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u2026.(iv)<\/strong><\/p>\n

The equations of motion under gravity can be obtained by replacing acceleration by acceleration due to gravity (g) and can be written as follows<\/p>\n