• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • ICSE Solutions
    • ICSE Solutions for Class 10
    • ICSE Solutions for Class 9
    • ICSE Solutions for Class 8
    • ICSE Solutions for Class 7
    • ICSE Solutions for Class 6
  • Selina Solutions
  • ML Aggarwal Solutions
  • ISC & ICSE Papers
    • ICSE Previous Year Question Papers Class 10
    • ISC Previous Year Question Papers
    • ICSE Specimen Paper 2021-2022 Class 10 Solved
    • ICSE Specimen Papers 2020 for Class 9
    • ISC Specimen Papers 2020 for Class 12
    • ISC Specimen Papers 2020 for Class 11
    • ICSE Time Table 2020 Class 10
    • ISC Time Table 2020 Class 12
  • Maths
    • Merit Batch

A Plus Topper

Improve your Grades

  • CBSE Sample Papers
  • HSSLive
    • HSSLive Plus Two
    • HSSLive Plus One
    • Kerala SSLC
  • Exams
  • NCERT Solutions for Class 10 Maths
  • NIOS
  • Chemistry
  • Physics
  • ICSE Books

Trigonometric Ratios Of Complementary Angles

November 24, 2022 by Veerendra

Trigonometric Ratios Of Complementary Angles


We know Trigonometric ratios of complementary angles are pair of angles whose sum is 90°
Like 40°, 50°, 60°, 30°, 20°, 70°, 15°, 75° ; etc,
Formulae:
sin (90° – θ) = cos θ,         cot (90° – θ) = tanθ
cos (90° – θ) = sin θ,         sec (90° – θ) = cosec θ
tan (90° – θ) = cot θ,         cosec (90° – θ) = sec θ

Trigonometric Ratios Of Complementary Angles With Examples

Example 1:    \( \text{Evaluate }\frac{\tan 65{}^\circ }{\cot 25{}^\circ }.  \)
Sol.    ∵ 65° + 25° = 90°
\( \frac{\tan 65{}^\circ }{\cot 25{}^\circ }=\frac{\tan \,(90{}^\circ -25{}^\circ )}{\cot \,25{}^\circ }=\frac{\cot 25{}^\circ }{\cot 25{}^\circ }=1 \)

Example 2:    Without using trigonometric tables, evaluate the following:
\(\left( i \right)~\text{ }\frac{\cos \,\,37{}^\text{o}}{\sin \,\,53{}^\text{o}}\text{   }\left( ii \right)~\frac{\sin \,\,41{}^\text{o}}{\cos \,\,49{}^\text{o}}~\text{   }\left( iii \right)~\frac{\sin \,\,30{}^\text{o}17\acute{\ }}{\cos \,\,59{}^\text{o}\,43\acute{\ }}\)
Sol.    (i)  We have,
\( \frac{\cos \,\,37{}^\text{o}}{\sin \,\,53{}^\text{o}}=\frac{\cos (90{}^\text{o}-53{}^\text{o})}{\sin \,\,53{}^\text{o}}=\frac{\sin \,\,53{}^\text{o}}{\sin \,\,53{}^\text{o}}=1 \)
[∵  cos(90º – θ) = sin θ]
(ii)  We have,
\( \frac{\sin \,\,41{}^\text{o}}{\cos \,\,49{}^\text{o}}=\frac{\sin (90{}^\text{o}-49{}^\text{o})}{\cos \,49{}^\text{o}}=\frac{\cos \,49{}^\text{o}}{\cos \,49{}^\text{o}}=1 \)
[∵  sin (90º – θ) = cos θ]
(iii)  We have,
\( \frac{\sin \,\,30{}^\text{o}\,17\acute{\ }}{\cos \,\,59{}^\text{o}\,43\acute{\ }}=\frac{\sin (90{}^\text{o}-59{}^\text{o}43\acute{\ })}{\cos \,59{}^\text{o}43\acute{\ }}=\frac{\cos \,59{}^\text{o}43\acute{\ }}{\cos \,59{}^\text{o}43\acute{\ }}=1 \)

Example 3:    Without using trigonometric tables evaluate the following:
(i) sin2 25º + sin2 65º (ii) cos2 13º – sin2 77º
Sol.   (i) We have,
sin2 25º + sin265º = sin2 (90º – 65º) + sin2 65º
= cos265º + sin265º = 1
[∵ sin (90º – θ) = cos θ]
(ii) We have,
cos213º– sin277º = cos2(90º – 77º) – sin277º
= sin277º – sin277º = 0
[∵ cos (90º – θ) = sin θ]

Example 4:    \( (\text{i})\text{ }\frac{\cot \,\,54{}^\text{o}}{\tan \,\,36{}^\text{o}}+\frac{\tan \,\,20{}^\text{o}}{\cot \,\,70{}^\text{o}}-2 \)
(ii)  sec 50º sin 40° + cos 40º cosec 50º
Sol.   (i)  We have,
\( \frac{\cot \,\,54{}^\text{o}}{\tan \,\,36{}^\text{o}}+\frac{\tan \,\,20{}^\text{o}}{\cot \,\,70{}^\text{o}}-2 \)
\( =\frac{\cot (90{}^\text{o}-36{}^\text{o})}{\tan 36{}^\text{o}}+\frac{\tan \,20{}^\text{o}}{\cot (90{}^\text{o}-20{}^\text{o})}-2 \)
\( =\frac{\tan \,\,36{}^\text{o}}{\tan \,\,36{}^\text{o}}+\frac{\tan \,\,20{}^\text{o}}{\tan \,\,20{}^\text{o}}-2\)
= 1 + 1 – 2 = 0
(ii)  We have,
sec50º sin40º + cos40º cosec50º
= sec(90º – 40º) sin40º + cos40º cosec(90º – 40º)
= cosec40º sin40º + cos40ºsec40º
\( =\frac{\sin \,\,40{}^\text{o}}{\sin \,\,40{}^\text{o}}+\frac{\cos \,\,40{}^\text{o}}{\cos \,\,40{}^\text{o}}\)
= 1 + 1 = 2

Example 5:     Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Sol.    (i) We have,
cosec 69º + cot 69º
= cosec (90º – 21º) + cot (90º – 21º)
= sec 21º + tan 21º
[∵ cosec (90º – θ) = sec θ and cot (90º –θ) = tan θ]
(ii) We have,
sin 81º + tan 81º
= sin (90º – 9º) + tan (90º – 9º)
= cos 9º + cot 9º
[∵ sin (90º – θ) = cos θ and tan (90º –θ) = cot θ]
(iii) We have,
sin 72º + cot 72º
= sin (90º – 18º) + cot (90º – 18º)
= cos 18º + tan 18º
[∵ sin (90º – 18º) = cos 18º and tan (90º –18º) = cot 18º]

Example :6     Without using trigonometric tables, evaluate the following:
\( \frac{{{\sin }^{2}}20{}^\text{o}+{{\sin }^{2}}70{}^\text{o}}{{{\cos }^{2}}20{}^\text{o}+{{\cos }^{2}}70{}^\text{o}}+\frac{\sin (90{}^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90{}^\text{o}-\theta )\cos \theta }{\cot \theta } \)
Sol.       \( \frac{{{\sin }^{2}}20{}^\text{o}+{{\sin }^{2}}70{}^\text{o}}{{{\cos }^{2}}20{}^\text{o}+{{\cos }^{2}}70{}^\text{o}}+\frac{\sin (90{}^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90{}^\text{o}-\theta )\cos \theta }{\cot \theta } \)
\( =\frac{{{\sin }^{2}}20{}^\text{o}+{{\sin }^{2}}(90{}^\text{o}-20{}^\text{o})}{{{\cos }^{2}}20{}^\text{o}+{{\cos }^{2}}(90{}^\text{o}-20{}^\text{o})}+\frac{\sin (90{}^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90{}^\text{o}-\theta )\cos \theta }{\cot \theta } \)
\( =\frac{{{\sin }^{2}}20{}^\text{o}+{{\cos }^{2}}20{}^\text{o}}{{{\cos }^{2}}20{}^\text{o}+{{\sin }^{2}}20{}^\text{o}}+\frac{\cos \theta \sin \theta }{\frac{\sin \theta }{\cos \theta }}+\frac{\sin \theta \cos \theta }{\frac{\cos \theta }{\sin \theta }} \)
\( \left[ \sin (90{}^\text{o}-\theta )=\cos \theta \,\,\,and\cos (90{}^\text{o}-\theta )\,\,=\,\,\sin \theta \right] \)
= 1 + cos2 θ + sin2 θ = 1 + 1 = 2

Example :7     If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ.
Sol.    We have,
tan 2θ = cot (θ + 6º)
⇒ cot(90º – 2θ) = cot (θ + 6º)
⇒ 90º – 2θ = θ + 6º  ⇒  3θ = 84º
⇒ θ = 28º

Example :8     If A, B, C are the interior angles of a triangle ABC, prove that
\( \tan \frac{B+C}{2}=\cot \frac{A}{2} \)
Sol.    In ∆ABC, we have
A + B + C = 180º
⇒ B + C = 180º – A
\( \Rightarrow \frac{B+C}{2}=\text{ }90{}^\text{o}-\frac{A}{2} \)
\( \Rightarrow \tan \left( \frac{B+C}{2} \right)=\tan \left( 90{}^\text{o}-\frac{A}{2} \right) \)
\( \Rightarrow \tan \left( \frac{B+C}{2} \right)=\cot \frac{A}{2} \)

Example :9     If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Sol.     tan 2A = cot (A – 18°)
cot (90° – 2A) = cot (A – 18°)
(∵ cot (90° – θ) = tan θ)
90° – 2A = A – 18°
3A = 108°
A = 36°

Example :10     If tan A = cot B, prove that A + B = 90°.
Sol.    ∵ tan A = cot B
tan A = tan (90° – B)
A = 90° – B
A + B = 90°. Proved

Example :11     If A, B and C are interior angles of a triangle ABC, then show that
\( \sin \left( \frac{B+C}{2} \right)=\cos \frac{A}{2}  \)
Sol.    ∵  A + B + C = 180° (a.s.p. of ∆)
B + C = 180° – A
\(\left( \frac{B+C}{2} \right)=90{}^\circ -\frac{A}{2}\)
\( \sin \left( \frac{B+C}{2} \right)=\sin \left( 90{}^\circ -\frac{A}{2} \right) \)
\( \sin \left( \frac{B+C}{2} \right)=\cos \frac{A}{2}  \)      Proved.

Example :12     Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Sol.    ∵ 23 = 90 – 67 & 15 = 90 – 75
∴ sin 67° + cos 75°
= sin (90 – 23)° + cos (90 – 15)°
= cos 23° + sin 15°.

Filed Under: Mathematics Tagged With: Complementary Angles, Trigonometric Ratios, Trigonometric Ratios Of Complementary Angles, Trigonometry

Primary Sidebar

  • MCQ Questions
  • ICSE Solutions
  • Selina ICSE Solutions
  • Concise Mathematics Class 10 ICSE Solutions
  • Concise Physics Class 10 ICSE Solutions
  • Concise Chemistry Class 10 ICSE Solutions
  • Concise Biology Class 10 ICSE Solutions
  • Concise Mathematics Class 9 ICSE Solutions
  • Concise Physics Class 9 ICSE Solutions
  • Concise Chemistry Class 9 ICSE Solutions
  • Concise Biology Class 9 ICSE Solutions
  • ML Aggarwal Solutions
  • ML Aggarwal Class 10 Solutions
  • ML Aggarwal Class 9 Solutions
  • ML Aggarwal Class 8 Solutions
  • ML Aggarwal Class 7 Solutions
  • ML Aggarwal Class 6 Solutions
  • HSSLive Plus One
  • HSSLive Plus Two
  • Kerala SSLC
  • Recent Posts

    • The River Question and Answers
    • What is Man without the Beasts? Question and Answers
    • Not Just a Teacher, but a Friend Question and Answers
    • Swami is Expelled from School Question and Answers
    • V.V.S. Laxman, Very Very Special Question and Answers
    • What is a Player? Question and Answers
    • True Height Question and Answers
    • Little Bobby Question and Answers
    • The Duck and the Kangaroo Question and Answers
    • The Snake and the Mirror Question and Answers
    • AP Board Question and Answers 9th Class English

    Footer

    • Picture Dictionary
    • English Speech
    • ICSE Solutions
    • Selina ICSE Solutions
    • ML Aggarwal Solutions
    • HSSLive Plus One
    • HSSLive Plus Two
    • Kerala SSLC
    • Distance Education
    DisclaimerPrivacy Policy
    Area Volume Calculator