• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • ICSE Solutions
    • ICSE Solutions for Class 10
    • ICSE Solutions for Class 9
    • ICSE Solutions for Class 8
    • ICSE Solutions for Class 7
    • ICSE Solutions for Class 6
  • Selina Solutions
  • ML Aggarwal Solutions
  • ISC & ICSE Papers
    • ICSE Previous Year Question Papers Class 10
    • ISC Previous Year Question Papers
    • ICSE Specimen Paper 2021-2022 Class 10 Solved
    • ICSE Specimen Papers 2020 for Class 9
    • ISC Specimen Papers 2020 for Class 12
    • ISC Specimen Papers 2020 for Class 11
    • ICSE Time Table 2020 Class 10
    • ISC Time Table 2020 Class 12
  • Maths
    • Merit Batch

A Plus Topper

Improve your Grades

  • CBSE Sample Papers
  • HSSLive
    • HSSLive Plus Two
    • HSSLive Plus One
    • Kerala SSLC
  • Exams
  • NCERT Solutions for Class 10 Maths
  • NIOS
  • Chemistry
  • Physics
  • ICSE Books

Cross Multiplication Method For Solving Equations

December 8, 2020 by Veerendra

Cross Multiplication Method For Solving Equations

By the method of elimination by substitution, only those equations can be solved, which have unique solution. But the method of cross multiplication discussed below is applicable in all the cases; whether the system has a unique solution, no solution or infinitely many solutions.
Let us solve the following system of equations
a1x + b1y + c1 = 0                    ….(1)
a2x + b2y + c2 = 0                             ….(2)
Multiplying equation (1) by b2 and equation (2) by b1, we get
a1b2x + b1b2y + b2c1 = 0              ….(3)
a2b1x + b1b2y + b1c2 = 0        ….(4)
Subtracting equation (4) from equation (3), we get
(a1b2 – a2b1) x + (b2c1 – b1c2) = 0
\(\Rightarrow x=\frac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\)
\(\left[ {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}\ne 0\text{   and    }\frac{{{a}_{1}}}{{{a}_{2}}}\ne \frac{{{b}_{1}}}{{{b}_{2}}} \right]\)
\(\text{Similarly, }y=\frac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\)
These values of x and y can also be written as
\(\frac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\frac{-y}{{{a}_{1}}{{c}_{2}}-{{a}_{2}}{{c}_{1}}}=\frac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\)

Cross Multiplication Method Examples

Example 1:    Solve the following system of equations by cross-multiplication method.
2x + 3y + 8 = 0
4x + 5y + 14 = 0
Sol.    The given system of equations is
2x + 3y + 8 = 0
4x + 5y + 14 = 0
By cross-multiplication, we get
Cross Multiplication Method For Solving Equations 1A
\(\Rightarrow \frac{x}{3\times 14-5\times 8}=\frac{x}{3\times 14-5\times 8}=\frac{1}{2\times 5-4\times 3}\)
\(\Rightarrow \frac{x}{42-40}=\frac{-y}{28-32}=\frac{1}{10-12} \)
\(\Rightarrow \frac{x}{2}=\frac{-y}{-4}=\frac{1}{-2} \)
\(\Rightarrow \frac { x }{ 2 }\) = \(\frac { -1 }{ 2 }\)
⇒ x = – 1
\(\Rightarrow \frac { -y }{ -4 }\) = \(\frac { -1 }{ 2 }\)
⇒ y = – 2
Hence, the solution is x = – 1, y = – 2
We can verify the solution.

Example 2:    Solve the follownig system of equations by the method of cross-multiplication.
2x – 6y + 10 = 0
3x – 7y + 13 = 0
Sol.   The given system of equations is
2x – 6y + 10 = 0       ….(1)
3x – 7y + 13 = 0        ….(2)
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{-6\times 13-(-7)\times 10}=\frac{-y}{2\times 13-3\times 10}=\frac{1}{2\times (-7)-3\times (-6)} \)
\(\Rightarrow \frac{x}{78+70}=\frac{-y}{26-30}=\frac{1}{-14+18} \)
\(\Rightarrow \frac{x}{-8}=\frac{-y}{-4}=\frac{1}{4} \)
\(\Rightarrow \frac { x }{ -8 }\) = \(\frac { 1 }{ 4 }\)
⇒ x = – 2
\(\Rightarrow \frac { -y }{ -4 }\) = \(\frac { 1 }{ 4 }\)
⇒ y = 1
Hence, the solution is x = – 2, y = 1
Example 3:    Solve the following system of equations by the method of cross-multiplication.
11x + 15y = – 23;   7x – 2y = 20
Sol.    The given system of equations is
11x + 15y + 23 = 0
7x – 2y – 20 = 0
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{15\times (-20)-(-2)\times 23}=\frac{-y}{11\times (-20)-7\times 23}=\frac{1}{11\times (-2)-7\times 15}\)
\(\Rightarrow \frac{x}{-300+46}=\frac{-y}{-220-161}=\frac{1}{-22-105} \)
\(\Rightarrow \frac{x}{-254}=\frac{-y}{-381}=\frac{1}{-127} \)
\(\Rightarrow \frac{x}{-254}=\frac{1}{-127}\Rightarrow x=2 \)
\(\text{and}\frac{-y}{-381}=\frac{1}{-127}\Rightarrow \text{y}=\text{ }-3 \)
Hence, x = 2, y = – 3 is the required solution.

Example 4:    Solve the following system of equations by cross-multiplication method.
ax + by = a – b; bx – ay = a + b
Sol.    Rewriting the given system of equations, we get
ax + by – (a – b) = 0
bx – ay – (a + b) = 0
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{b\times \{-(a+b)\}-(-a)\times \{-(a-b)\}}=\frac{-y}{-a(a+b)+b(a-b)}=\frac{1}{-{{a}^{2}}-{{b}^{2}}} \)
\(\Rightarrow \frac{x}{-ab-{{b}^{2}}-{{a}^{2}}+ab}=\frac{-y}{-{{a}^{2}}-ab+ab-{{b}^{2}}}=\frac{1}{-({{a}^{2}}+{{b}^{2}})} \)
\(\Rightarrow \frac{x}{-({{a}^{2}}+{{b}^{2}})}=\frac{-y}{-({{a}^{2}}+{{b}^{2}})}=\frac{1}{-({{a}^{2}}+{{b}^{2}})} \)
\(\Rightarrow \frac{x}{-({{a}^{2}}+{{b}^{2}})}\frac{1}{-({{a}^{2}}+{{b}^{2}})}\Rightarrow x=1 \)
\(and\text{ }\frac{-y}{-({{a}^{2}}+{{b}^{2}})}\frac{1}{-({{a}^{2}}+{{b}^{2}})}\Rightarrow y=-1 \)

Example 5:    Solve the following system of equations by cross-multiplication method.
x + y = a – b;   ax – by = a2 + b2
Sol.    The given system of equations can be rewritten as:
x + y – (a – b) = 0
ax – by – (a2 + b2) = 0
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{-({{a}^{2}}+{{b}^{2}})-(-b)\times \{-(a-b)\}}=\frac{-y}{-({{a}^{2}}+{{b}^{2}})-a\times \{-(a-b)\}}=\frac{1}{-b-a} \)
\(\Rightarrow \frac{x}{-({{a}^{2}}+{{b}^{2}})-b(a-b)}=\frac{-y}{-({{a}^{2}}+{{b}^{2}})+a(a-b)}=\frac{1}{-(b+a)} \)
\(\Rightarrow \frac{x}{-{{a}^{2}}-{{b}^{2}}-ab+{{b}^{2}}}=\frac{-y}{-{{a}^{2}}-{{b}^{2}}+{{a}^{2}}-ab}=\frac{1}{-(a+b)} \)
\(\Rightarrow \frac{x}{-a(a+b)}=\frac{-y}{-b(a+b)}=\frac{1}{-(a+b)} \)
\(\Rightarrow \frac{x}{-a(a+b)}=\frac{1}{-(a+b)}\Rightarrow x=a \)
\(and\text{ }\frac{-y}{-b(a+b)}=\frac{1}{-(a+b)}\Rightarrow y=-b \)

Example 6:    Solve the following system of equations by the method of cross-multiplication:
\(\frac{x}{a}+\frac{y}{b}=a+b \) ;   \(\frac{x}{{{a}^{2}}}+\frac{y}{{{b}^{2}}}=2 \)
Sol:    The given system of equations is rewritten as:
\(\frac{x}{a}+\frac{y}{b}-\left( a+b \right)\)              ….(1)
\(\frac{x}{{{a}^{2}}}+\frac{y}{{{b}^{2}}}-2 \)             ….(2)
Multiplying equation (1) by ab, we get
bx + ay – ab (a + b) = 0              ….(3)
Multiplying equation (2) by a2 b2, we get
b2x + a2y – 2a2b2 = 0                          ….(4)
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{-2{{a}^{3}}{{b}^{2}}+{{a}^{3}}b(a+b)}=\frac{-y}{-2{{a}^{2}}{{b}^{3}}+a{{b}^{3}}(a+b)}=\frac{1}{{{a}^{2}}b-a{{b}^{2}}} \)
\(\Rightarrow \frac{x}{-2{{a}^{3}}{{b}^{2}}+{{a}^{4}}b+{{a}^{3}}{{b}^{2}}}=\frac{y}{-2{{a}^{2}}{{b}^{3}}+{{a}^{2}}{{b}^{3}}+a{{b}^{4}}}=\frac{1}{ab(a-b)} \)
\(\Rightarrow \frac{x}{{{a}^{4}}b-{{a}^{3}}{{b}^{2}}}=\frac{-y}{a{{b}^{4}}-{{a}^{2}}{{b}^{3}}}=\frac{1}{ab(a-b)} \)
\(\Rightarrow \frac{x}{{{a}^{3}}b(a-b)}=\frac{y}{a{{b}^{3}}(a-b)}=\frac{1}{ab(a-b)} \)
\(\Rightarrow \frac{x}{{{a}^{3}}b(a-b)}=\frac{1}{ab(a-b)} \)
\(\Rightarrow x=\frac{{{a}^{3}}b(a-b)}{ab(a-b)}={{a}^{2}} \)
\(And\text{ }\frac{y}{a{{b}^{3}}(a-b)}=\frac{1}{ab(a-b)} \)
\(\Rightarrow y=\frac{a{{b}^{3}}(a-b)}{ab(a-b)}={{b}^{2}} \)
Hence, the solution x = a2, y = b2

Example 7:    Solve the following system of equations by cross-multiplication method –
ax + by = 1;   bx + ay = \(\frac{{{(a+b)}^{2}}}{{{a}^{2}}+{{b}^{2}}}-1\)
Sol:    The given system of equations can be written as
ax + by – 1 = 0            ….(1)
\(bx+ay=\frac{{{(a+b)}^{2}}}{{{a}^{2}}+{{b}^{2}}}-1 \)
\(\Rightarrow bx+ay=\frac{{{a}^{2}}+2ab+{{b}^{2}}-{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \)
\(\Rightarrow bx+ay=\frac{2ab}{{{a}^{2}}+{{b}^{2}}} \)
\(\Rightarrow bx+ay-\frac{2ab}{{{a}^{2}}+{{b}^{2}}}=0 \)        ….. (2)
Rewritting the equations (1) and (2), we have
ax + by – 1 = 0
\(\Rightarrow bx+ay-\frac{2ab}{{{a}^{2}}+{{b}^{2}}}=0 \)
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{b\times \left( \frac{-2ab}{{{a}^{2}}+{{b}^{2}}} \right)-a\times (-1)}=\frac{-y}{a\times \left( \frac{-2ab}{{{a}^{2}}+{{b}^{2}}} \right)-b\times (-1)}=\frac{1}{a\times a-b\times b} \)
\(\Rightarrow \frac{x}{-\frac{2a{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}+a}=\frac{-y}{\frac{-2{{a}^{2}}b}{{{a}^{2}}+{{b}^{2}}}+b}=\frac{1}{{{a}^{2}}-{{b}^{2}}} \)
\(\Rightarrow \frac{x}{\frac{-2a{{b}^{2}}+{{a}^{3}}+a{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}=\frac{-y}{\frac{-2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}}{{{a}^{2}}+{{b}^{2}}}}=\frac{1}{{{a}^{2}}-{{b}^{2}}} \)
\(\Rightarrow \frac{x}{\frac{a({{a}^{2}}-{{b}^{2}})}{{{a}^{2}}+{{b}^{2}}}}=\frac{-y}{\frac{b({{b}^{2}}-{{a}^{2}})}{{{a}^{2}}+{{b}^{2}}}}=\frac{1}{{{a}^{2}}-{{b}^{2}}} \)
\( \Rightarrow \frac{x}{\frac{a({{a}^{2}}-{{b}^{2}})}{{{a}^{2}}+{{b}^{2}}}}=\frac{1}{{{a}^{2}}-{{b}^{2}}}\Rightarrow x=\frac{a}{{{a}^{2}}+{{b}^{2}}} \)
\(and\text{ }\frac{-y}{\frac{b({{b}^{2}}-{{a}^{2}})}{{{a}^{2}}+{{b}^{2}}}}=\frac{1}{{{a}^{2}}-{{b}^{2}}}\Rightarrow y=\frac{b}{{{a}^{2}}+{{b}^{2}}} \)
Hence, the solution is   \(x=\frac{a}{{{a}^{2}}+{{b}^{2}}},y=\frac{b}{{{a}^{2}}+{{b}^{2}}} \)

Example 8:    Solve the following system of equations in x and y by cross-multiplication method
(a – b) x + (a + b) y = a2 – 2ab – b2
(a + b) (x + y) = a2 + b2
Sol:    The given system of equations can be rewritten as :
(a – b) x + (a +b) y – (a2 – 2ab – b2) = 0
(a + b) x + (a + b) y – (a2 + b2) = 0
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{(a+b)\times \{-({{a}^{2}}+{{b}^{2}})\}-(a+b)\times \{-({{a}^{2}}-2ab-{{b}^{2}})\}}=\frac{-y}{(a-b)\times \{-({{a}^{2}}+{{b}^{2}})\}-(a+b)\times \{-({{a}^{2}}-2ab-{{b}^{2}})\}}=\frac{1}{(a-b)\times (a+b)-(a+b)\times (a+b)} \)
\(\Rightarrow \frac{x}{-(a+b)({{a}^{2}}+{{b}^{2}})+(a+b)({{a}^{2}}-2ab-{{b}^{2}})}=\frac{-y}{-(a-b)({{a}^{2}}+{{b}^{2}})+(a+b)({{a}^{2}}-2ab-{{b}^{2}})}=\frac{1}{(a-b)(a+b)-{{(a+b)}^{2}}} \)
\(\Rightarrow \frac{x}{(a+b)[-({{a}^{2}}+{{b}^{2}})+(a+b)({{a}^{2}}-2ab-{{b}^{2}})]}=\frac{-y}{(a+b)({{a}^{2}}-2ab-{{b}^{2}})-(a-b)({{a}^{2}}+{{b}^{2}})}=\frac{1}{(a+b)(a-b-a-b)} \)
\(\Rightarrow \frac{x}{(a+b)(-2ab-2{{b}^{2}})}=\frac{-y}{{{a}^{3}}-{{a}^{2}}b-3a{{b}^{2}}-{{b}^{3}}-{{a}^{3}}-a{{b}^{2}}+{{a}^{2}}b+{{b}^{3}}}=\frac{1}{(a+b)(-2b)} \)
\(\Rightarrow \frac{x}{-(a+b)(2a+2b)b}=\frac{-y}{-4a{{b}^{2}}}=\frac{1}{-2b(a+b)} \)
\(\Rightarrow \frac{x}{-2(a+b)(a+b)b}=\frac{1}{-2b(a+b)}\Rightarrow x=a+b \)
\(and\text{ }\frac{-y}{-4a{{b}^{2}}}=\frac{1}{-2b(a+b)}\Rightarrow y=\frac{2ab}{a+b} \)
Hence, the solution of the given system of equations is x = a + b, \(y=\frac{2ab}{a+b} \)

Example 9:    Solve the following system of equations by cross-multiplications method.
a(x + y) + b (x – y) = a2 – ab + b2
a(x + y) – b (x – y) = a2 + ab + b2
Sol:    The given system of equations can be rewritten as
ax + bx + ay – by – ( a2 – ab + b2) = 0
⇒ (a + b) x + (a – b) y – (a2 – ab + b2) = 0 ….(1)
And  ax – bx + ay + by – (a2 + ab + b2) = 0
⇒ (a – b) x + (a + b) y – (a2 + ab + b2) = 0 …(2)
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{x}{(a-b)\times \{-({{a}^{2}}+ab+{{b}^{2}})\}-(a+b)\times \{-({{a}^{2}}-ab+{{b}^{2}})\}}=\frac{-y}{(a+b)\times \{-({{a}^{2}}+ab+{{b}^{2}})\}-(a-b)\times \{-({{a}^{2}}-ab+{{b}^{2}})\}}=\frac{1}{(a+b)\times (a+b)-(a-b)(a-b)} \)
\(\Rightarrow \frac{x}{-(a-b)({{a}^{2}}+ab+{{b}^{2}})+(a+b)({{a}^{2}}-ab+{{b}^{2}})}=\frac{-y}{-(a+b)({{a}^{2}}+ab+{{b}^{2}})+(a-b)({{a}^{2}}-ab+{{b}^{2}})}=\frac{1}{{{(a+b)}^{2}}-{{(a-b)}^{2}}}\)
\(\Rightarrow \frac{x}{-({{a}^{3}}-{{b}^{3}})+({{a}^{3}}+{{b}^{2}})}=\frac{-y}{-{{a}^{3}}-2{{a}^{2}}b-2a{{b}^{2}}-{{b}^{3}}+{{a}^{3}}-2{{a}^{2}}b+2a{{b}^{2}}-{{b}^{3}}}=\frac{1}{{{a}^{2}}+2ab+{{b}^{2}}-{{a}^{2}}+2ab-{{b}^{2}}}\)
\(\Rightarrow \frac{x}{2{{b}^{3}}}=\frac{-y}{-4{{a}^{2}}b-2{{b}^{3}}}=\frac{1}{4ab} \)
\(\Rightarrow \frac{x}{2{{b}^{3}}}=\frac{-y}{-2b(2{{a}^{2}}+{{b}^{2}})}=\frac{1}{4ab}\)
\(\Rightarrow \frac{x}{2{{b}^{3}}}=\frac{1}{4ab}\Rightarrow x=\frac{{{b}^{2}}}{2a}\)
\(and\text{ }\frac{-y}{-2b(2{{a}^{2}}+{{b}^{2}})}=\frac{1}{4ab}\Rightarrow y=\frac{2{{a}^{2}}+{{b}^{2}}}{2a}\)
Hence, the solution is \(x=\frac{{{b}^{2}}}{2a},y=\frac{2{{a}^{2}}+{{b}^{2}}}{2a}\)

Example 10:    Solve the following system of equations by the method of cross-multiplication.
\(\frac{a}{x}-\frac{b}{y}=0;\text{ }\frac{a{{b}^{2}}}{x}+\frac{{{a}^{2}}b}{y}={{a}^{2}}+{{b}^{2}};\)
Where x ≠ 0, y ≠ 0
Sol:    The given system of equations is
\(\frac{a}{x}-\frac{b}{y}=0\)     ………(1)
\(\frac{a{{b}^{2}}}{x}+\frac{{{a}^{2}}b}{y}-\left( {{a}^{2}}+{{b}^{2}} \right)=0\) ………(2)
Putting  \(\frac { a }{ x }=u\) and \(\frac { b }{ y }=v\)  in equatinos (1) and (2) the system of equations reduces to
u – v + 0 = 0
b2u + a2v – (a2 + b2) = 0
Using formula for cross multiplication method:
Cross Multiplication Method For Solving Equations 2a
So, from equation (1) and (2) we can write the value of a,b and c.
\(\Rightarrow \frac{u}{{{a}^{2}}+{{b}^{2}}-{{a}^{2}}\times 0}=\frac{-v}{-({{a}^{2}}+{{b}^{2}})-{{b}^{2}}\times 0}=\frac{1}{{{a}^{2}}-(-{{b}^{2}})}\)
\(\Rightarrow \frac{u}{{{a}^{2}}+{{b}^{2}}}=\frac{-v}{-({{a}^{2}}+{{b}^{2}})}=\frac{1}{{{a}^{2}}+{{b}^{2}}} \)
\(\Rightarrow \frac{u}{{{a}^{2}}+{{b}^{2}}}=\frac{1}{{{a}^{2}}+{{b}^{2}}}\Rightarrow u=1 \)
\(and\text{ }\frac{-v}{-({{a}^{2}}+{{b}^{2}})}=\frac{1}{{{a}^{2}}+{{b}^{2}}}\Rightarrow v=1 and\text{ u}=\frac{a}{x}=1\Rightarrow x=a \)
\(v=\frac{b}{y}=1\Rightarrow y=b \)
Hence, the solution of the given system of equations is x = a, y = b.

Filed Under: Mathematics Tagged With: Cross Multiplication Method, Cross Multiplication Method Examples, Pair Of Linear Equations

Primary Sidebar

  • MCQ Questions
  • RS Aggarwal Solutions
  • RS Aggarwal Solutions Class 10
  • RS Aggarwal Solutions Class 9
  • RS Aggarwal Solutions Class 8
  • RS Aggarwal Solutions Class 7
  • RS Aggarwal Solutions Class 6
  • ICSE Solutions
  • Selina ICSE Solutions
  • Concise Mathematics Class 10 ICSE Solutions
  • Concise Physics Class 10 ICSE Solutions
  • Concise Chemistry Class 10 ICSE Solutions
  • Concise Biology Class 10 ICSE Solutions
  • Concise Mathematics Class 9 ICSE Solutions
  • Concise Physics Class 9 ICSE Solutions
  • Concise Chemistry Class 9 ICSE Solutions
  • Concise Biology Class 9 ICSE Solutions
  • ML Aggarwal Solutions
  • ML Aggarwal Class 10 Solutions
  • ML Aggarwal Class 9 Solutions
  • ML Aggarwal Class 8 Solutions
  • ML Aggarwal Class 7 Solutions
  • ML Aggarwal Class 6 Solutions
  • HSSLive Plus One
  • HSSLive Plus Two
  • Kerala SSLC

Recent Posts

  • Difference Between G And g: A Comprehensive Guide
  • Difference Between Isotopes And Isobars: Understanding The Key Differences
  • Difference Between Biodegradable And Nonbiodegradable: A Comprehensive Guide
  • Difference Between Fragmentation And Regeneration: Understanding The Key Differences
  • Difference Between Flora And Fauna: A Comprehensive Guide
  • Wireless Network Advantages and Disadvantages | Advantages and Disadvantages of Wireless Network Communication
  • Franchising Advantages and Disadvantages | Pros and Cons of Buying a Franchise, Advantages and Disadvantages
  • Spiral Model Advantages and Disadvantages | Advantages and Disadvantages of Using Spiral Model
  • Advantages and Disadvantages of Prototype Model | Prototyping Model in Software Engineering for Testing
  • Interviews Advantages And Disadvantages | What is an Interview? 6 Merits and Demerits of Interview
  • Advantages and Disadvantages of Observation Method | Merits and Demerits of Observation in Marketing

Footer

  • RS Aggarwal Solutions
  • RS Aggarwal Solutions Class 10
  • RS Aggarwal Solutions Class 9
  • RS Aggarwal Solutions Class 8
  • RS Aggarwal Solutions Class 7
  • RS Aggarwal Solutions Class 6
  • Picture Dictionary
  • English Speech
  • ICSE Solutions
  • Selina ICSE Solutions
  • ML Aggarwal Solutions
  • HSSLive Plus One
  • HSSLive Plus Two
  • Kerala SSLC
  • Distance Education
DisclaimerPrivacy Policy
Area Volume Calculator